Sains Malaysiana 54(1)(2025): 225-242

http://doi.org/10.17576/jsm-2025-5401-18

 

Sequestration of Doxycycline and Mefenamic Acid from Liquid Phase Using 1,3-Diaminopropane Modified Poly(Acrylonitrile-Acrylic Acid): Isotherm, Kinetic and Mechanism Studies

(Penyerapan Doksisiklin dan Asid Mefenamik daripada Fasa Cecair Menggunakan 1,3-Diaminopropane Poli(Akrilonitril Asid-Akrilik) Terubah Suai: Kajian Isoterma, Kinetik dan Mekanisme)

 

FATIMAH LEE1, SITI NURUL AIN MD JAMIL1,2,*, NUR NIDA SYAMIMI SUBRI1, ABEL ADEKANMI ADEYI3,4 & RUSLI DAIK5,6

 

1Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2Centre for Foundation Studies in Science of Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
3Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
4Department of Chemical and Petroleum Engineering, College of Engineering, Afe Babalola Ado-Ekiti (ABUAD), PMB 5454, Ado-Ekiti 360211, Ekiti State, Nigeria
5Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
6Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Diserahkan: 20 Ogos 2024/Diterima: 30 Oktober 2024

 

Abstract

Accumulation of pharmaceutical residues in aquatic environment due to daily consumption by humans and animals for diseases treatment results in alarming long-term effects. This study evaluates the adsorption potential of a polymer-based adsorbent, 1,3-diaminopropane-modified poly(acrylonitrile-acrylic acid) (DAP-poly(ACN/AA)), for the uptake of doxycycline (DOX) and mefenamic acid (MEFA) from aqueous solution. The chemical modification of poly(ACN/AA) copolymer with DAP was successful as suggested by the FTIR spectra and microanalysis results. The SEM analysis showed that the modified copolymer has larger particle size, which was 156 nm as compared to that of poly(ACN/AA) copolymer (133 nm). The influence of adsorbent dosage, contact time, pH and initial concentration on the adsorption of DOX and MEFA compounds were investigated. The kinetic studies of DOX and MEFA was fitted well to pseudo-second-order model with chemisorption being the rate-controlling step. The equilibrium isotherm has its fitness in the following order: Langmuir model > Freundlich model > Temkin model. The maximum adsorption capacities for DOX and MEFA were 210.4 mg/g and 313.7 mg/g, respectively. The excellent high sorption capacity suggest that DAP-modified poly(ACN/AA) copolymer is a potential adsorbent for the treatment of DOX and MEFA bearing effluent in adsorption system.

 

Keywords: Copolymer; doxycycline; isotherm; kinetic pharmaceutical; mefenamic acid; poly(acrylonitrile-co-acrylic acid)

 

Abstrak

Pengumpulan sisa farmaseutikal dalam persekitaran akuatik akibat penggunaan harian oleh manusia dan haiwan untuk rawatan penyakit mengakibatkan kesan jangka panjang yang membimbangkan. Kajian ini menilai potensi penjerapan bahan penjerap berasaskan polimer, 1,3-diaminopropan-terubahsuai poli(akrilonitril-asid akrilik) (DAP-poli(ACN/AA)) untuk mengeluarkan doksisiklin (DOX) dan asid mefenamik (MEFA) daripada larutan akueus. Pengubahsuaian kimia kopolimer poli(ACN/AA) dengan DAP berjaya seperti mana dicadangkan daripada spektra FT-IR dan keputusan analisis-mikro. Analisis SEM menunjukkan bahawa kopolimer yang diubah suai mempunyai saiz zarah yang lebih besar, iaitu 156 nm berbanding dengan kopolimer poli(ACN/AA) (133 nm). Pengaruh dos penjerap, masa sentuhan, pH dan kepekatan awal ke atas penjerapan sebatian DOX dan MEFA telah dikaji. Kajian kinetik DOX dan MEFA telah dipadankan dengan baik pada model pseudo-tertib-kedua dengan penjerapan kimia sebagai langkah mengawal kadar. Isoterma keseimbangan mempunyai kesesuaiannya dalam susunan berikut: Model Langmuir > Model Freundlich > Model Temkin. Kapasiti penjerapan maksimum untuk DOX dan MEFA masing-masing ialah 210.4 mg/g dan 313.7 mg/g. Kapasiti penjerapan tinggi yang sangat baik menunjukkan bahawa kopolimer poli(ACN/AA) diubah suai DAP ialah penjerap yang berpotensi untuk rawatan efluen yang mengandungi DOX dan MEFA dalam sistem penjerapan.

 

Kata kunci: Asid mefenamik; doksisiklina; isoterma; kinetik farmaseutikal; kopolimer; poli(akrilonitril-ko-asid akrilik)

 

RUJUKAN

Abu Rumman, G., Al-Musawi, T.J., Sillanpaa, M. & Balarak, D. 2021. Adsorption performance of an amine-functionalized MCM–41 mesoporous silica nanoparticle system for ciprofloxacin removal. Environmental Nanotechnology, Monitoring and Management 16: 100536. https://doi.org/10.1016/j.enmm.2021.100536

Adeyi, A.A., Jamil, S.N.A.M., Abdullah, L.C. & Choong, T.S.Y. 2019. Adsorption of malachite green dye from liquid phase using hydrophilic thiourea-modified poly(acrylonitrile-co-acrylic acid): Kinetic and isotherm studies. Journal of Chemistry 2019: 4321475. https://doi.org/10.1155/2019/4321475

Ahmed, M.B., Zhou, J.L., Ngo, H.H., Guo, W., Johir, M.A.H. & Sornalingam, K. 2017. Single and competitive sorption properties and mechanism of functionalized biochar for removing sulfonamide antibiotics from water. Chemical Engineering Journal 311: 348-358. https://doi.org/10.1016/j.cej.2016.11.106

Ajenifuja, E., Ajao, J.A. & Ajayi, E.O.B. 2017. Equilibrium adsorption isotherm studies of Cu (II) and Co (II) in high concentration aqueous solutions on Ag-TiO2-modified kaolinite ceramic adsorbents. Applied Water Science 7(5): 2279-2286. https://doi.org/10.1007/s13201-016-0403-6

Al-Ameer, L., Hashim, K.K. & Taha, D.N. 2022. Determination of mefenamic acid in aqueous solutions using merging zone - continuous flow injection. Water Practice and Technology 17(9): 1881-1892. https://doi.org/10.2166/wpt.2022.096

Al-Odaini, N.A., Zakaria, M.P., Yaziz, M.I., Surif, S. & Abdulghani, M. 2013. The occurrence of human pharmaceuticals in wastewater effluents and surface water of Langat River and its tributaries, Malaysia. International Journal of Environmental Analytical Chemistry 93(3): 245-264. https://doi.org/10.1080/03067319.2011.592949

Banipal, T.S., Kaur, H. & Banipal, P.K. 2017. Studies on the binding ability of diclofenac sodium to cationic surfactants micelles in aqueous ethanol solutions: Calorimetric, spectroscopic, and light scattering approach. Journal of Thermal Analysis and Calorimetry 128(1): 501-511. https://doi.org/10.1007/s10973-016-5889-5

Deng, F., Luo, X-B., Ding, L. & Luo, S-L. 2019. Application of nanomaterials and nanotechnology in the reutilization of metal ion from wastewater. In Nanomaterials for the Removal of Pollutants and Resource Reutilization, edited by Luo, X. & Deng, F. Elsevier. pp. 149-178. https://doi.org/10.1016/B978-0-12-814837-2.00005-6

Dolatabadi, M., Ahmadzadeh, S. & Ghaneian, M.T. 2020. Mineralization of mefenamic acid from hospital wastewater using electro-Fenton degradation: Optimization and identification of removal mechanism issues. Environmental Progress and Sustainable Energy 39(3): e13380. https://doi.org/10.1002/ep.13380

Eniola, J.O., Kumar, R., Barakat, M.A. & Rashid, J. 2022. A review on conventional and advanced hybrid technologies for pharmaceutical wastewater treatment. Journal of Cleaner Production 356: 131826. https://doi.org/10.1016/j.jclepro.2022.131826

Gao, F. 2019. An overview of surface‐functionalized magnetic nanoparticles: Preparation and application for wastewater treatment. ChemistrySelect 4(22): 6805-6811. https://doi.org/10.1002/slct.201900701

Ghaemi, M. & Absalan, G. 2015. Fast removal and determination of doxycycline in water samples and honey by Fe3O4 magnetic nanoparticles. Journal of the Iranian Chemical Society 12: 1-7. https://doi.org/10.1007/s13738-014-0450-6

Habila, M.A., Moshab, M.S., El-Toni, A.M., ALOthman, Z.A. & Badjah Hadj Ahmed, A.Y. 2023. Thermal fabrication of magnetic Fe3O4 (nanoparticle)@carbon sheets from waste resources for the adsorption of dyes: Kinetic, equilibrium, and UV–visible spectroscopy investigations. Nanomaterials 13(7): 1266. https://doi.org/10.3390/nano13071266

Hanafiah, Z.M., Bithi, A.S., Mohtar, W.H.M.W., Zin, W.Z.W., Tahrim, N.A., Manan, T.S.A., Rohani, R. & Indarto, A. 2024. Pharmaceutical footprint in domestic wastewater: Case study in Malaysia. Water, Air, & Soil Pollution 235: 51. https://doi.org/10.1007/s11270-023-06844-1

Hassan, M.M. & Hawkyard, C.J. 2007. Decolorisation of effluent with ozone and re-use of spent dyebath. In Environmental Aspects of Textile Dyeing, edited by Christie, R. Elsevier. pp. 149-190. https://doi.org/10.1533/9781845693091.149

Hua, Y., Yao, Q., Lin, J., Li, X. & Yang, Y. 2022. Comprehensive survey and health risk assessment of antibiotic residues in freshwater fish in southeast China. Journal of Food Composition and Analysis 114: 104821. https://doi.org/10.1016/j.jfca.2022.104821

Husien, S., El-Taweel, R.M., Salim, A.I., Fahim, I.S., Said, L.A. & Radwan, A.G. 2022. Review of activated carbon adsorbent material for textile dyes removal: Preparation, and modelling. Current Research in Green and Sustainable Chemistry 5: 100325. https://doi.org/10.1016/j.crgsc.2022.100325

Ismar, E. & Sarac, A.S. 2016. Synthesis and characterization of poly (acrylonitrile‐co‐acrylic acid) as precursor of carbon nanofibers. Polymers for Advanced Technologies 27(10): 1383-1388. https://doi.org/10.1002/pat.3807

Jamil, S., Daik, R. & Ahmad, I. 2014. Synthesis and thermal properties of acrylonitrile/butyl acrylate/fumaronitrile and acrylonitrile/ethyl hexyl acrylate/fumaronitrile terpolymers as a potential precursor for carbon fiber. Materials 7(9): 6207-6223. https://doi.org/10.3390/ma7096207

Lai, E.C., Shin, J., Kubota, K., Man, K.K.C., Park, B.J., Pratt, N., Roughead, E.E., Wong, I.C.K., Kao Yang, Y. & Setoguchi, S. 2018. Comparative safety of NSAIDs for gastrointestinal events in Asia‐Pacific populations: A multi‐database, international cohort study. Pharmacoepidemiology and Drug Safety 27(11): 1223-1230. https://doi.org/10.1002/pds.4663

Malaysian Health Technology Assessment Section. 2022. Putrajaya: Ministry of Health Malaysia. https://hq.moh.gov.my/medicaldev/cawangan-penilaian-teknologi-kesihatan/

McMurry, J.E. 2023. Organic Chemistry: A Tenth Edition. OpenStax.

Mohamad, Z.A., Md Jamil, S.N.A., Subri, N.N.S., Ismail, F.S. & Daik, R. 2023. Adsorption of diclofenac from aqueous solution by amine-functionalized poly (acrylonitrile-co-acrylic acid) microparticles adsorbent. Sains Malaysiana 52(11): 3189-3209. https://doi.org/10.17576/jsm-2023-5211-13

Mohd Hanafiah, Z., Wan Mohtar, W.H.M., Abd Manan, T.S., Bachi, N.A., Abu Tahrim, N., Abd Hamid, H.H., Ghanim, A., Ahmad, A., Wan Rasdi, N. & Abdul Aziz, H. 2023. Determination and risk assessment of pharmaceutical residues in the urban water cycle in Selangor Darul Ehsan, Malaysia. PeerJ 11: e14719. https://doi.org/10.7717/peerj.14719

Mosoarca, G., Vancea, C., Popa, S., Gheju, M. & Boran, S. 2020. Syringa vulgaris leaves powder a novel low-cost adsorbent for methylene blue removal: Isotherms, kinetics, thermodynamic and optimization by Taguchi method. Scientific Reports 10: 17676. https://doi.org/10.1038/s41598-020-74819-x

Mudhoo, A., Bhatnagar, A., Rantalankila, M., Srivastava, V. & Sillanpää, M. 2019. Endosulfan removal through bioremediation, photocatalytic degradation, adsorption and membrane separation processes: A review. Chemical Engineering Journal 360: 912-928. https://doi.org/10.1016/j.cej.2018.12.055

Nandiyanto, A.B.D., Ragadhita, R. & Fiandini, M. 2023. Interpretation of Fourier transform infrared spectra (FTIR): A practical approach in the polymer/plastic thermal decomposition. Indonesian Journal of Science and Technology 8(1): 113-126. https://doi.org/10.17509/ijost.v8i1.53297

Newberry, R.W. & Raines, R.T. 2017. The n→π* interaction. Accounts of Chemical Research 50(8): 1838-1846. https://doi.org/10.1021/acs.accounts.7b00121

Olusegun, S.J. & Mohallem, N.D.S. 2019. Insight into the adsorption of doxycycline hydrochloride on different thermally treated hierarchical CoFe2Od/bio-silica nanocomposite. Journal of Environmental Chemical Engineering 7(6): 103442. https://doi.org/10.1016/j.jece.2019.103442

Panic, V., Seslija, S., Nesic, A. & Velickovic, S. 2013. Adsorption of azo dyes on polymer materials. Hemijska Industrija 67(6): 881-900. https://doi.org/10.2298/HEMIND121203020P

Perumal, M.K.K., Gandhi, D., Renuka, R.R., Lakshminarayanan, A., Thiyagarajulu, N. & Kamaraj, C. 2024. Advanced nano-based adsorbents for purification of pharmaceutical residue polluted water: A critical review. Process Safety and Environmental Protection 186: 552-565. https://doi.org/10.1016/j.psep.2024.04.011

Pourhakkak, P., Taghizadeh, A., Taghizadeh, M., Ghaedi, M. & Haghdoust, S. 2021. Fundamentals of adsorption technology. Interface Science and Technology 33: 1-70. https://doi.org/10.1016/B978-0-12-818805-7.00001-1

Qiu, B., Shao, Q., Shi, J., Yang, C. & Chu, H. 2022. Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Separation and Purification Technology 300: 121925. https://doi.org/10.1016/j.seppur.2022.121925

Rahimi, K., Riahi, S., Abbasi, M. & Fakhroueian, Z. 2019. Modification of multi-walled carbon nanotubes by 1,3-diaminopropane to increase CO2 adsorption capacity. Journal of Environmental Management 242: 81-89. https://doi.org/10.1016/j.jenvman.2019.04.036

Rapeia, N.S.M., Jamil, S.N.A.M., Abdullah, L.C., Mobarekeh, M.N., Yaw, T.C.S., Huey, S.J. & Zahri, N.A.M. 2014. Preparation and characterization of hydrazine-modified poly(acrylonitrile-co-acrylic acid). Journal of Engineering Science and Technology Special Issue on SOMCHE 2014 & RSCE 2014 Conference. pp. 61-70.

Ren, Q., Ma, Y., Wei, F., Qin, L., Chen, H., Liang, Z. & Wang, S. 2023. Preparation of Zr-MOFs for the adsorption of doxycycline hydrochloride from wastewater. Green Processing and Synthesis 12(1): 20228127. https://doi.org/10.1515/gps-2022-8127

Saber, S.E., Abdullah, L.C., Md. Jamil, S.N.A., Choong, T.S.Y. & Ting, T.M. 2021. Trimethylamine functionalized radiation-induced grafted polyamide 6 fibers for p-nitrophenol adsorption. Scientific Reports 11: 19573. https://doi.org/10.1038/s41598-021-97397-y

Samal, K., Mahapatra, S. & Hibzur Ali, M. 2022. Pharmaceutical wastewater as emerging contaminants (EC): Treatment technologies, impact on environment and human health. Energy Nexus 6: 100076. https://doi.org/10.1016/j.nexus.2022.100076

Santos, D., Costa, F., Franceschi, E., Santos, A., Dariva, C. & Mattedi, S. 2014. Synthesis and physico-chemical properties of two protic ionic liquids based on stearate anion. Fluid Phase Equilibria 376: 132-140. https://doi.org/10.1016/j.fluid.2014.05.043

Savadi, P., Lotfipour, F., McMillan, N.A.J., Hashemzadeh, N. & Hallaj-Nezhadi, S. 2022. Passive and pH-gradient loading of doxycycline into nanoliposomes using modified freeze-drying of a monophase solution method for enhanced antibacterial activity. Chemical Papers 76(5): 3097-3108. https://doi.org/10.1007/s11696-021-02036-5

Shen, T., Han, T., Zhao, Q., Ding, F., Mao, S. & Gao, M. 2022. Efficient removal of mefenamic acid and ibuprofen on organo-Vts with a quinoline-containing gemini surfactant: Adsorption studies and model calculations. Chemosphere 295: 133846 https://doi.org/10.1016/j.chemosphere.2022.133846

Slavov, D., Tomaszewska, E., Grobelny, J., Drenchev, N., Karashanova, D., Peshev, Z. & Bliznakova, I. 2024. FTIR spectroscopy revealed nonplanar conformers, chain order, and packaging density in diOctadecylamine- and octadecylamine-passivated gold nanoparticles. Journal of Molecular Structure 1314: 138827. https://doi.org/10.1016/j.molstruc.2024.138827

Sruthi, P.R. & Anas, S. 2020. An overview of synthetic modification of nitrile group in polymers and applications. Journal of Polymer Science 58(8): 1039-1061. https://doi.org/10.1002/pol.20190190

Subri, N.N.S., Cormack, P.A.G., Siti Nurul, S.N.A., Abdullah, L.C. & Daik, R. 2018. Synthesis of poly(acrylonitrile-co-divinylbenzene-co-vinylbenzyl chloride)-derived hypercrosslinked polymer microspheres and a preliminary evaluation of their potential for the solid-phase capture of pharmaceuticals. Journal of Applied Polymer Science 135(2): 45677. https://doi.org/10.1002/app.45677

Thiang, E.L., Lee, C.W., Takada, H., Seki, K., Takei, A., Suzuki, S., Wang, A. & Bong, C.W. 2021. Antibiotic residues from aquaculture farms and their ecological risks in Southeast Asia: A case study from Malaysia. Ecosystem Health and Sustainability 7(1): 1926337. https://doi.org/10.1080/20964129.2021.1926337

Wang, J. & Guo, X. 2020. Adsorption kinetic models: Physical meanings, applications, and solving methods. Journal of Hazardous Materials 390: 122156. https://doi.org/10.1016/j.jhazmat.2020.122156

Wei, J., Liu, Y., Li, J., Zhu, Y., Yu, H. & Peng, Y. 2019. Adsorption and co-adsorption of tetracycline and doxycycline by one-step synthesized iron loaded sludge biochar. Chemosphere 236: 124254. https://doi.org/10.1016/j.chemosphere.2019.06.224

Wei, X., Wang, Y., Chen, J., Xu, F., Liu, Z., He, X., Li, H. & Zhou, Y. 2020. Adsorption of pharmaceuticals and personal care products by deep eutectic solvents-regulated magnetic metal-organic framework adsorbents: Performance and mechanism. Chemical Engineering Journal 392: 124808. https://doi.org/10.1016/j.cej.2020.124808

World Health Organization (WHO). 2023. Antimicrobial Resistance. Geneva: World Health Organization.

Yadav, S., Shah, A. & Malhotra, P. 2024. Orange peel-derived Cu2O/RGO nanocomposite: Mesoporous binary system for degradation of doxycycline in water. Environment, Development and Sustainability 26(2): 4505-4532. https://doi.org/10.1007/s10668-022-02895-2

Yadav, K., Latelwar, S.R., Datta, D. & Jana, B. 2023. Efficient removal of MB dye using litchi leaves powder adsorbent: Isotherm and kinetic studies. Journal of the Indian Chemical Society 100(4): 100974. https://doi.org/10.1016/j.jics.2023.100974

Zahoor, M., Wahab, M., Salman, S.M., Sohail, A., Ali, E.A. & Ullah, R. 2022. Removal of doxycycline from water using Dalbergia sissoo waste biomass based activated carbon and magnetic oxide/activated bioinorganic nanocomposite in batch adsorption and adsorption/membrane hybrid processes. Bioinorganic Chemistry and Applications 2022: 2694487. https://doi.org/10.1155/2022/2694487

Zahri, N.A.M., Jamil, S.N.A.M., Abdullah, L.C., Yaw, T.C.S., Mobarekeh, M.N., Huey, S.J. & Rapeia, N.S.M. 2015. Improved method for preparation of amidoxime modified poly(acrylonitrile-co-acrylic acid): Characterizations and adsorption case study. Polymers 7(7): 1205-1220. https://doi.org/10.3390/polym7071205

 

*Pengarang untuk surat-menyurat; email: ctnurulain@upm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya